Adversity is a refining fire. 9

I achieved a minor but important breakthrough this morning at around 4:50 AM when Angus the dog decided he needed to get up and go outside.

I have been struggling for months to properly title the book project I have been working on now for about five years. The last three chapters have been the hardest since these chapters cover the most well known parts of my subject, Captain Cassin Young, US Navy Medal of Honor awardee (deceased).

The breakthrough is that I believe I have the name that fits the work I have done and best describes what I want people to see when they pick up the book.

I will reveal that in the weeks to come.

Debbie and I have tried to get into a habit each day of studying God’s word through the Bible and some study guides we purchased for individual chapters. The study has been a lot like going back to school and we have both gained much from reading and looking at the many resources. This morning’s lesson for me came from Ecclesiastes Chapter 7 verses 1-2.  These verses focus on adversity and how we are defined in its shadow.

We include a prayer each day for the country, the President and Vice President and their families and for all of those who love and protect this country.

While there are some who see nothing but hatred in this country because of the past, we see the goodness and the mercy that happens here every day. Without freedom, there is little chance for people to rise up from the ashes of adversity, no chance for charity that overcomes greed and absolutely no hope for a world that is broken in so many ways.

My ancestors came to America under very adverse circumstances and because of the land of their birth were faced with tremendous adversity. Yet they managed to use the freedoms and opportunities that were available to rise above those humble beginnings. We have doctors, lawyers, Navy, Army, and Coast Guard Officers, teachers, millworkers and business men and women of every kind in our family. Nearly all have contributed to the song we call “America the Beautiful” and every single one that is alive stands for the pledge of allegiance.

We rise or fail when we remember that adversity is the refining fire that either prepares us all for our destiny or gives us the excuse to never achieve what we should.

I am hoping to have the book completed by the end of July. Then will start the process of editing and hopefully finding the right publisher. But I am absolutely passionate about the story the book will tell and the life of Captain Cassin Young. I hope passion equals success.

Mister Mac

Cassin Young, Captain, United States Navy MOH Recipient, Information request Reply

Good morning. For the past few years, I have been searching through Naval Records, newspaper articles, period books and a number of other sources to help complete the picture of one of the greatest heroes the Navy has ever produced, Captain Cassin Young. The journey has had a lot of twists and turns but I am nearing completion of the project.

I am missing one crucial element of the story that the rest hinges upon. During 1940-1942, then Commander Young was the Executive Officer of the Naval Submarine Base in New London Connecticut. He was a submariner from his earliest days in the Navy during some very pivotal times and served as a Submarine Squadron commander prior to this assignment.

But something happened at the base that changed the course of his life. I have part of the story but it comes to me from a second hand source. The only way I can validate it is to speak with a family member that can corroborate what I have found. I have reached out to them on social media and in other ways but so far no response.

So I am taking a shot in the dark.

I am asking that if you read this, you would consider sharing it to your own Blog or to any social media that you are connected to. Have them reach out to me here at theleansubmariner and I will do the rest.

When I started the project, my motivation was that so little was known about the amazing life and service of an American Hero. Last Christmas, I was given a book about Pearl Harbor and the author and one of the men he wrote about alluded to something that was both reprehensible and unthinkable. They attacked someone who had spent a lifetime preparing for just the moment that occurred on that December morning in Pearl. My book will show a different view of those events based on many sources. I feel compelled that the rest of the real story be told.

The time period Young spent in New London would help to fill in one last gap in the book. Any help would be appreciated.

Thanks

Mister Mac

Now More Than Ever – a Strong Navy and Peace 5

The Navy League has been tireless in its mission to support the sea services throughout the last 116 years. From its founding in 1902, they have tried to always live the spirit that Theodore Roosevelt embodied when he said “A good Navy is not a provocative of war, it is the surest guarantee of peace.”

Three years after he said those fateful words, the world was changed forever on May 27, 1905 when a smaller Japanese fleet defeated the powerful Russian Navy in the Straits of Tsushima.

This unexpected naval battle set the tone for naval conflict for the next century. It showed that a willful and resourceful nation could project sea power and influence the course of history in a way that the world would have to notice. It clearly demonstrated that no country, no matter how small or limited in resources, should ever be taken for granted.

Despite that warning, America was not ready for the Great War that was to come. We had lulled ourselves into thinking that the vastness of the oceans surrounding us would keep us from harm. We were wrong. An entirely new menace called the submarine destroyed that perception of safety once and for all. 100 years ago today, fighting men and women would serve in a cause that should have been avoidable. But the oceans brought the threat to us.

As many countries did, we relied on the promise of peace through disarmament when that war completed. The navy was shrunk and a peace dividend was expected in its place. It never came. Instead, the Axis of Japan, Italy and Germany once more used the oceans to project their power. We were ill prepared for that war too, but the drive and determination of the American people carried the day once more.

The global situation is much the same today as it was before the major wars. Countries are once more expanding their forces and influence through sea power.

  • China is pushing the boundaries in the seas and islands around her country that once enjoyed freedom;
  • A resurging and aggressive Russian Navy has a global reach and an eye on returning to their once unlimited status
  • Rogue nations that are seeking to capitalize on technology are once more challenging freedom around the globe.

 

On Memorial Day, we honor the fallen. We remember their sacrifices. But we honor and remember them best when we remain ever ready and ever vigilant. We pay them the ultimate tribute when we are once more ready to defend that which they gave everything for.

The Navy League stands with all of our sea services in paying honor and tribute to our fallen. We stand for maintaining the strongest military on the face of the planet. America stands for freedom in this world. In the face of so many challenges, maintaining that strength is the only way to maintain our freedom. America needs to be alert now more than any time in history.

Mister Mac

Attention on Deck: Mare Island Naval Cemetery Needs Your Help Reply

It is fitting on Memorial Day weekend that we honor those who have died in service to our country.

Many of us also remember those who served on active duty in peace or war time and have passed on to the final muster.

This morning, I got an email from Nestor Aliga asking for help in spreading the word about a proposal that would honor the many men who are interred at the Mare Island Naval Cemetery that has been forgotten by the country.

I am including Nestor’s email and contact information (with his permission) so that you can help to make this dream a reality.

I hope you will consider joining me in this mission.

Mister Mac

 

Dear fellow Veterans, Service members, and Friends,

The Mare Island Naval Cemetery (MINC) is the oldest military cemetery on the west coast. It is the final resting place for over 800 of our country’s heroes who served since the War of 1812. Designated as a National Historic Landmark, three Congressional Medal of Honor recipients – James Cooney, William Halford, and Alexander Parker – are buried there.

PUBLIC LAW 93-43 dated June 18, 1973 mandated that jurisdiction over naval cemeteries – including MINC – must immediately be transferred from the Navy to the Veterans Affairs (VA). However, that law was somehow ignored by the Navy and the VA in 1973 and during the Base Realignment and Closure process in 1993. The federal government left MINC behind and did not provide any funding to restore it to honorable conditions nor any support for its immense ongoing maintenance.

On April 18, 2018, the City of Vallejo stated its willingness to relinquish control of MINC to the federal government. This letter was critical because it cleared a “critical path” for our Representative Mike Thompson (CA-05) to introduce H.R. 5588 on April 23, 2018 and for our Senator Dianne Feinstein to introduce S.2881 on May 17, 2018. Their bills direct the VA to seek an agreement with and for the City of Vallejo to transfer control of MINC to the VA. MINC would be under the VA National Cemetery Administration – whose mission is to maintain our Veterans’ cemeteries as national shrines.

State Senator Bill Dodd and Assembly member Tim Grayson – co-authors of California (CA) Senate Joint Resolution #26 which urges all of CA’s federally elected officials to support the transfer of MINC to the VA – fully support H.R.5588 and S.2881. The CA State Commanders Veterans Council – sanctioned by CA Military and Veterans Code Sect. 73.4 and the official voice of CA’s 1.8 million Veterans – also endorses H.R.5588 and S.2881.

So what are the next critical steps and how can you our fellow Americans assist with a fast-break?

Go to this Navy League website:

http://cqrcengage.com/navyleague/app/onestep-write-a-letter?2&engagementId=476893

Then write this message:

Please co-sponsor H.R.5588 and/or S.2881 today so they can be hotlined and passed in 2018.

OR go to:

https://www.senate.gov/general/contact_information/senators_cfm.cfm

https://www.house.gov/representatives

Select your elected officials, then write this message:

Please co-sponsor H.R.5588 and/or S.2881 today so they can be hotlined and passed in 2018.

We ardently believe that this legislation can be done in 2018 like what happened with the Clark Veterans Cemetery in the Philippines – which was abandoned in 1991. In 2012, H.R.4168 “Caring for the Fallen Act” and S.2320 “Remembering America’s Forgotten Veterans Cemetery Act of 2012” were introduced, voted before the year-end recess, and Public Law 112-260 was signed in 2013. That cemetery is back to national shrine conditions.

Don’t our American Veterans buried in the oldest military cemetery on the west coast deserve as much respect as our Veterans buried in the Philippines or in Europe or at our national cemeteries?

We Americans are certainly capable of flexing our muscle to “make right a historic wrong.” I urge all of us to urgently act and “show-of-force” our own American power!

Very Respectfully,

Nestor Aliga

Nestor.Aliga@comcast.net 

707-853-0062

The Line 13

As Memorial Day approaches, I know that all of us will be busy with tributes, ceremonies and parades of honor. At least I hope that we all would be so engaged. The truth is that many will be more focused on picnics and pools, parties and getaways, sales and sports. How far away from our own heritage have we drifted.

I will have the honor of participating in the Elizabeth Parade and Ceremony in Elizabeth PA. The ceremony goes back as far as anyone can remember and has been a regular part of my families tradition for nearly as long. I hope to be able to introduce a new poem written today for the occasion.

This poem is a reflection based on a vision I had about sailors today. I have copywrited the work so if you feel the desire to share, please contact me directly.

The Line

Mister Mac

A Prophesy From Nearly a Hundred Years Ago is Just as True Today 8

Everywhere you look these days, people are reacting to the senseless deaths of innocent people and wondering how we can stop the killing.

I think its a fair question. But I think we are not examining the root causes of what seems to be an increase in evil actions. Society has become very sophisticated since the days when the Europeans and others came to the shores of America. The vast country that lay before them was already inhabited, albeit with people who were not as organized and ready to repel the invaders. The resulting turmoil between natives and invaders was exacerbated by the conflict between the “Old Countries” that sought to take advantage of the new lands for their own purposes.

At one point, the invaders became the nation we are today.

The old ways of kings and queens were rejected and a representative form of government emerged. Laws were struck and revised and slowly the nation evolved as a new entity with a purpose and a culture of its own. Along the way, a man or a woman no longer had the day to day fear of attack from the forces of nature, other warring parties, or just people with bad purposes. Communities sprung up and men no longer had to carry their weapons openly to provide for individual liberties and security. Gunfights in the street diminished and new laws were created to govern behavior. The police would be the new protectors and ordinary people could just go about their business building the new country.

See the source image

But all of those circumstances were surrounded by one constant. We had moral codes. We had religion as a backbone to society and a family structure that held people and particularly children accountable. Schools had structure, business had rules, the police were respected if not feared, and the government was something that was there to help manage it all.

Well, that is the illusion anyway. Things always seem to look better in the rear view mirror.

I have been researching the early 1900’s for a book I am writing. Some of the articles I have been finding come from the Library of Congress’s Project called Chronicling America. The project entails digitally recording newspapers in their entirety from all over the country. This storehouse of information is free (so far) and shines a light on what the world was really like back in the day. Some of the stories about what really did happen back in the day. Killings by shooting, stabbing, poisoning and so on fill many of the pages. Violence all over the world is recorded in nearly every decade. Bank robbing’s, stickups, home invasions, and on and on. Frankly, the idea that violence is a new thing is as ludicrous as thinking that man has ever really had a peaceful period.

The main difference now is the way we are all connected electronically through the internet and cable.

Unless you live in a cave and have no connection (which means you aren’t able to read this) you are being influenced by someone’s opinion or interpretation of the facts as they occur. Somewhere today, large groups of young people who were disturbed enough to put down their video games, are gathering to protest something. Some believe that taking away everyone’s guns will make it a safer world. The less idealized may think that just regulating the guns is a good solution. Mind you, none of them is old enough to own a gun, but they somehow have the wisdom to know how to fix what has been an almost non stop problem since the day Cain picked up the first rock.

See the source image

The question of guns and weapons is not a new one.

In 1919, the first World War had just ended and the countries were still counting the cost of the carnage. New and powerful weapons had reached an industrial strength that no one could have imagined. Mass bombardments, gas, machine guns, airplane and even the deadly creature from the sea called a submarine. In the months and years that followed Armistice Day, nations began the struggle to contain the beasts they had unleashed. The British had been particularly hard hit by the submarine menace and determined to eradicate the foul little beast no matter the cost. Other nations who saw the boats as a great equalizer fought hard to prevent the Brits from having their way. The American’s saw the fledgling weapon as a tool of the future. Its a good thing they did. When the Japanese left the battleship fleet lying on the bottom of Pearl Harbor, it was American Submarines that helped to carry the war back to the enemy almost immediately. Imagine if the Brits had been successful in their quest.

This is an article from the time that was pretty prophetic

From “The Washington times. (Washington [D.C.]), 17 Jan. 1919”

I would suggest that we pay heed to those words of nearly a hundred years ago.

For all those willing to surrender the second amendment, how do you propose protecting the remaining amendments?

Or are you just going to rely on the good will of others?

#notme

Mister Mac

Floating Drydocks: A Noteworthy Innovation That Changed the Course of Two Wars 7

Floating Drydocks had been around for a long time before World War 2. But the scope of naval warfare during World War 2 and the Cold War that would follow would test the Navy’s ability to maintain vessels in faraway locations. This is part on of the story of docks like USS Los Alamos (AFDB 7) which serviced the Polaris and Poseidon Missile submarines of the Cold War.

Looking back on the years since the LA was placed out of commission, its easy to forget that for over thirty years she served on the front lines of a different kind of conflict. But it was a need identified and filled many years before that which made her ability to fill this new role possible. This is the story of the Floating Drydocks of World War II.

 

Advanced Base Sectional Dock Number 3

“The fleet of floating drydocks built by the Bureau of Yards and Docks during World War II was a significant and at times dramatic factor in the Navy’s success in waging global war.

It had long been recognized that in the event of another world war the fleet would be required to operate in remote waters, and that ships were going to suffer hard usage and serious battle damage. It was obvious that many crippled ships would be lost, or at least would be out of action for months while returning to home ports for repairs, unless mobile floating drydocks could be provided that could trail the fleet wherever it went. It was the Bureau’s responsibility to meet these requirements.

Floating drydocks have been used for overhaul and repair of ships for many years, and many ingenious designs have been devised from time to time. One of the most interesting was the Adamson dock, patented in 1816, which may be considered the prototype of some of the new mobile docks. The Navy apparently built several wooden sectional docks at various navy yards about 1850, but little is known of their history.

About 1900, two new steel floating drydocks were built for the Navy. The first of these, of 18,000 tons lifting capacity, was built in 1899-1902 at Sparrow’s Point, Md., and towed to the Naval Station a Algiers, La., where it was kept in intermittent service for many years. In 1940, it was towed via the Panama Canal to Pearl Harbor to supplement the inadequate docking facilities there. Since the dock was wider than the Canal locks, it was necessary to disassemble it at Cristobal and to reassemble it at Balboa. Although both the dock and the ship in it were damaged during the Japanese attack on Pearl Harbor on December 7, 1941, the dock was not lost, but was quickly repaired and subsequently performed invaluable service both in the salvaging of vessels damaged in that attack and in the support of the fleet in the Pacific.

The other dock, the Dewey, was a 16,000-ton dock, built in three sections, and capable of docking itself. It was constructed in 1903-1905, also at Sparrow’s Point, Md., and was towed via the Suez Canal to the Philippines. The saga of this voyage is an epic of ocean towing history. The Dewey was still in service at Olongapo when the Japanese invaded the Philippines early in 1942. [sic: Preliminary landings took place as early as 8 December, with the main landings following on the 21st. Manila was occupied on New Years Day. — HyperWar] It was scuttled by the American naval forces before they abandoned the station.

Neither of these docks was suitable for mobile operation. Between 1920 and 1930, the Bureau of Yards and Docks made numerous studies of various types of mobile docks of both unit and sectional types. In 1933, funds were finally obtained for one 2,200-ton dock, and the Bureau designed and built the ARD-1. This dock was of revolutionary design. It was a one-piece dock, ship-shaped in form, with a molded closed bow and a faired stern, and may be best described as U-shaped in both plan and cross-section. The stern was closed by a bottom-hinged flap gate, operated by hydraulic rams. This gate was lowered to permit entrance of a ship into the submerged dock and then closed. The dock was then raised by pumping water from the ballast compartments and also from the main basin. This dock was equipped with its own diesel-electric power plant, pumping plant, repair shops, and crew’s accommodations. It was the first drydock in any navy which was sufficiently self-sustaining to accompany a fleet into remote waters.

The ARD-1 was towed to Pearl Harbor, where it was used successfully throughout the war. Thirty docks of this type, somewhat larger and incorporating many improvements adopted as a result of operational experience with this experimental dock, were constructed and deployed throughout the world during the war.

Advance Base Sectional Dock in the South Pacific
View shows keel blocks and bilge blocks set to accommodate a ship.

 

In 1935, the Bureau obtained $10,000,000 for a similar one-piece mobile dock, to be capable of lifting any naval vessel afloat. Complete plans and specifications were prepared by the Bureau for this dock, which was to be 1,027 feet long, 165 feet beam, and 75 feet molded depth. Bids received for this huge drydock, designed as the ARD-3, appreciably exceeded the appropriation, and the project was abandoned when the additional funds needed for its execution were refused.

At the same time, plans were prepared for the ARD-2, an improved and enlarged model of the ARD-1. It was not until November 1940, however, that funds were obtained for its construction, and the project placed under contract. The ARD-2, and an additional dock, the ARD-5, were completed in the spring of 1942. Additional docks of this type were built in rapid succession and were delivered during 1943 and 1944 at an average rate of more than one a month.

Types of Floating Drydocks

The war program of floating drydocks included a wide variety of types to meet the varying service requirements for which they were designed. The principal categories were as follows:

  • ABSD — Advance Base Sectional Dock. Mobile, military, steel dock, either (a) of ten sections of 10,000 tons lifting capacity each, or (b) of seven sections of 8,000 tons lifting capacity, for battleships, carriers, cruisers, and large auxiliaries.
  • ARD — Auxiliary Repair Dock. Mobile, military, steel unit dock, ship-form hull, with a normal lifting capacity of 3,500 tons, for destroyers, submarines, and small auxiliaries.
  • ARDC — Auxiliary Repair Dock, Concrete. Mobile, military concrete trough type, unit dock with faired bow and stern, 2,800 tons lifting capacity.
  • AFD — Auxiliary Floating Dock. Mobile, military, steel trough type, unit dock, with faired bow and stern, of 1,000 tons lifting capacity.
  • AFDL — Auxiliary Floating Dock, Lengthened. Mobile, steel trough type, unit dock, similar to AFD’s, but lengthened and enlarged to provide 1,900 tons lifting capacity.
  • YFD — Yard Floating Dock. This category included a wide variety of types, designed generally for yard or harbor use, with services supplied from shore. Among the principal types were 400-ton concrete trough docks; 1,000-ton, 3,000-ton and 5,000-ton one-piece timber trough docks; sectional timber docks ranging from 7,000 to 20,000 tons lifting capacity; and three-piece self-docking steel sectional docks of 14,000 to 18,000 tons lifting capacity.

These classifications were modified in 1946 in order to make the standard nomenclature of floating drydocks consistent and more descriptive. Four class designations were established, as follows:

  • AFDB — Auxiliary Floating Drydock Big.30,000 tons and larger.
  • AFDM — Auxiliary Floating Drydock Medium.10,000 to 30,000 tons.
  • AFDL — Auxiliary Floating Drydock Little. Less than 10,000 tons.
  • AFDL(C) — Auxiliary Floating Drydock Little (Concrete).

Under this modification, the ABSD’s were redesignated AFDB’s; the ARD’s became AFDU’s; the RDC’s became AFDL(C)’s; the AFD’s became AFDL’s; and the YFD’s became AFDM’s.

Advance Base Sectional Dock

The problem of providing floating drydocks capable of moving to advanced operational areas in the wake of the fleet, of sustaining themselves in full operation without support from shore, and of sufficient size and lifting capacity to dock all capital ships had been under study by the Bureau for many years. The ARD-3 was one solution of this problem. It was recognized that a unit dock of this size possessed certain disadvantages. In required a special basin of huge size for its initial construction. It was necessary to retain this basin in reserve or provide an equivalent basin elsewhere, for the periodic docking of the hull, since it was not self-docking. The towing of a craft of this size presented an operational problem of unprecedented magnitude. Provision for stresses during storms at sea required heavy reinforcement of the dock. Concern was felt over the possibility of losing the unit dock from enemy action while en route.

Cruiser in an Advance Base Sectional Dock
Showing the ship secured in position so that it will be supported on the prepared blocking as the dock is unwatered.

 

Studies had been carried on concurrently by the Bureau on various types of sectional docks, which would be designed with faired hulls for ease of towing and with joint details which would permit rapid assembly in forward areas under adverse conditions. These schemes were not carried to a final conclusion, primarily because the requirements of the Bureau of Ships for the longitudinal strength and stiffness of the assembled dock could not be met by an practicable form of joint.

When war was declared, it was apparent at once that a number of mobile capital-ship floating drydocks would have to be constructed immediately. The project was authorized and funds made available early in 1942. Studies in connection with the preparation of plans and specifications led to the proposal of a sectional type of dock, with field-welded joints, designed for a strength materially below that previously specified by the Bureau of Ships. This reduction was accepted, and the sectional type adopted.

Unwatering an Advance Base Sectional Dock
Water is pumped out of the bottom pontoons and wingwall compartments to raise the ship out of the water.

These docks were of two different sizes. For battleships, carriers, and the largest auxiliaries, the larger docks, consisted of ten section, each 256 feet long and 80 feet wide, and with a nominal lifting capacity of 10,000 tons. When assembled to form the dock, these sections were placed transversely with 50-foot outrigger platforms at either end of the assembly, making the dock 927 feet long and 256 feet wide overall, with an effective length of 827 feet, a clear width inside wing walls of 133 feet, and a lifting capacity of 90,000 tons.

The smaller docks, intended for all except the largest battleships, carriers, and auxiliaries, consisted of seven sections, each 240 feet long and 101 feet wide, with a lifting capacity of 8,000 tons. The assembled dock had an effective length of 725 feet, an overall length of 825 feet, a width of 240 feet, a clear width inside wing walls of 120 feet, and a lifting capacity of 55,000 tons.

At maximum submergence the 10-section docks had a depth over the blocks of 46 feet, with a freeboard of almost 6 feet; the 7-section docks had a corresponding depth of 40 feet and and a freeboard of almost 5 feet.

For both sizes, the sections were faired fore and aft to a truncated bow and stern, and could be towed at a speed of 6 to 8 knots without excessive power. In the assembled docks, the flat bows and sterns formed interrupted berths alongside to which barges and vessels could be readily moored.


A Section of an Advance Base Sectional Dock in Tow
Wingwalls are down to reduce wind resistance. Repair equipment is stowed on deck.

The sections consisted of the bottom pontoon and two wing walls, which were hinged at the bottom so that they could be folded inboard for towing, the purpose being to reduce the presentation to the wind and to lower the center of gravity as compared to fixed standing wing walls.

Each bottom pontoon of the battleship dock was 28 feet deep and was subdivided by two watertight bulkheads running lengthwise and four watertight bulkheads athwart the section to form twelve water ballast compartments and a central buoyancy compartment, 36 feet by 80 feet. This buoyancy compartment contained two decks, the upper deck being used for crew’s quarters, and the lower deck, for the machinery compartment. The double bottom was subdivided to form fuel-oil and fresh water tanks. Access to the usable compartments was provided by passageways under the upper pontoon deck which connected to stair trunks in the wing walls.

The wing walls were 20 feet wide and 55 feet high, and were subdivided by a safety deck set 14 feet below the top deck to form dry compartments above and three water ballast compartments below. The dry compartments were completely utilized for shops, storage, and similar facilities. Quarters and galleys were in the dry compartments in the bottom pontoons.

Each section was equipped with two 525-h.p. diesel engines directly connected to 350-k.w. generators, and with pumps evaporators, compressors, and heating and ventilating apparatus. No propulsion machinery was provided.

The smaller docks were similar, except that the bottom pontoons were 231/2 feet deep and the wing walls were 18 feet wide and 49 feet high.

Each dock was equipped with two portal jib cranes having a lifting capacity of 15 tons at a radius of 85 feet, traveling on rails on the top deck of the wing walls. In the case of the smaller dock, the cranes were set back from the inner face of the wing walls to provide clearance for overhanging superstructures of carriers, and the outer rail was supported on steel framing erected on the outboard portion of the pontoon deck.

ABSD Construction

The 58 sections required for these docks were constructed by five contractors at six different sites, including four on the West Coast, one on the Gulf Coast, and one near Pittsburgh on the Ohio River. Generally, they were built in dry excavated basins which were flooded and opened to the harbor for launching. In one case, two basins in tandem were utilized to suit local site conditions, and the sections were locked down from the upper basin, in which they were built, to the lower basin, the water level of which was normally at tide level and was raised temporarily by pumping.

 

Picture:


Raising the Wingwalls of an Advance Base Sectional Dock with Hydraulic Jacks
Crews on top of wingwalls change position of the pins in the beams alternatively.

At one yard, the sections were built on inclined shipways and end-launched; at another, they were side-launched. These sections were built in from 8 to 14 months. Maximum possible use was made of prefabrication and pre-assembly methods.

ABSD Assembly. — Although the wing walls were generally erected initially in their upright position for ease of construction, it was necessary to lower them to the horizontal position for towing at sea. On arrival at the advance base where they were to be placed in service, the wing walls were first raised again to their normal position and the sections then aligned and connected.

An ingenious method was evolved for the raising of the wing walls, which was found to be quicker and more certain than the scheme originally contemplated of accomplishing the result by the buoyancy process. Each wing wall was jacked into position, using two jacking assemblies, each consisting of a long telescoping box strut and a 500-ton hydraulic jack. Closely spaced matching holes were provided in the outer and inner boxes of the strut through which pins were inserted to permit holding the load while the jacks were run back after reaching the limit of their travel. These devices were also designed to hold back the weight of the wing walls after they passed the balance point during the raising operation. Two 100-ton jacks opposing the main jacks were used for this purpose. After the wing walls were in the vertical position, they were bolted to the bottom pontoon around their entire perimeter, and all access connection between the wing wall and bottom pontoon were made watertight.

The sections of each dock were successively brought together and aligned by means of the matching pintles and gudgeons which had been provided for the purpose on the meeting faces of the sections. Heavy splice plates were then welded in position from section to section across the joints at the wing walls, at top and bottom, and on both the inside and the outside faces of the wing walls. The strength of these connections gave the assembled dock a resisting moment of about 500,000 foot-tons, or approximately one-fourth that of the largest prospective vessel to be docked.

The drydock cranes were carried on the pontoon deck of individual sections during tow, and were shifted to their operating position on the wing walls during assembly of the dock by immerging the partially assembled dock, bringing the section carrying the crane alongside, and aligning it so the rails on the pontoon deck were in line with those on the wing walls of the rest of the dock. The trim and alignment were adjusted during the transfer by a delicate control of water ballast.

The assembled docks were moored at anchorages in protected harbors where wave conditions, depth of water, and bottom holding power were satisfactory. The large docks required at least 80 feet depth for effective use. They were moored by 32 fifteen-ton anchors, 14 on both side and 2 at either end, with 150 fathoms scope of chain.

In actual operation, it was found that the effectiveness of these docks could be improved by providing auxiliary facilities in excess of those available on the dock itself. A considerable number of shop, storage, and personnel accommodation barges were provided for this purpose.

Special Problems

Special conditions of service involved many entirely new studies and developments for our floating drydocks. For instance, as the docks had to operate in outlying areas where ideal conditions for operation could not always be met, it was necessary to give the adequacy of their moorings special consideration. In the largest size docks, this involved wind-tunnel experiments which gave some surprising results and indicated that a rearrangement of the moorings as originally planned was desirable. Also, as the drydock operating crews were initially relatively inexperienced and docking of ships under advance base conditions had never been attempted to the extent contemplated, it was necessary to prepare complete operating manuals for the use and guidance of the crews. Damage control was also important, and damage-control manuals were prepared for all advance base docks, covering every possible contingency of weather an enemy action.

As advance base docks were commissioned and had regular Navy crews and as they operated in areas where they had to be self-sustaining to a large extent, it was necessary to develop allowance lists for each type of dock and outfit them in much the same manner as a ship. This necessitated the incorporation into the docks of special facilities for the handling, stowage, and issuance of great quantities of material and equipment.

Complete statistics have not been compiled of the total number of vessels of all kinds from the mightiest battleship and carriers to the humblest patrol craft that were salvaged, repaired, and overhauled in this armada of floating drydocks. Themost dramatic demonstration of the importance of the mobile drydocks was given during the long drawn-out naval support of the invasion of Okinawa, when the fleet was subjected for weeks to continual and desperate “Kamikaze” attacks by Japanese suicide-bombers. The fleet suffered great damage, but the ready availability of the mobile drydocks at nearby advance bases, and the yeoman service rendered by their own crews and the ship repair components at these bases, save many ships and minimized the time ships were out of action for repairs, to such an extent that these docks may well have represented the margin between success and failure.”

AFDB-1 with West Virginia (BB-48) high and dry in the dock

The AFDB’s served on for many years. You can read about some of their stories in the archives of theleansubmariner.com

Mister Mac

I love LA 3

Regular readers know that once upon a time when the world was still dark with fears from the Soviets, a little known base in Scotland served as a portable pier for our submarine fleet. Starting in 1960, units of the United States Fleet anchored in a small inlet called Holy Loch that was just up from Dunoon. The submarine tenders that rotated in and out for the next 31 years all toiled endlessly to support the ballistic missile submarines and occasional fast attacks.

The other major unit was the floating sectional drydock that was known

as the USS Los Alamos (AFDB 7).

You can search theleansubmariner by looking for articles about her and understand just how important this asset was and how amazing the technology was that allowed her to serve for the entire time Site One was open.

A chance for a new life for a venerable name

The LA has been decommissioned for nearly twenty seven years as a Naval Unit but a unique opportunity has emerged that would pay tribute to the city that gave its name to this unit.

LOS ALAMOS, N.M. (AP) – New Mexico’s congressional delegation says the U.S. Navy’s next nuclear submarine should be named “USS Los Alamos” in recognition of the community’s contributions.

The delegation sent a letter to Navy Secretary Richard Spencer on Monday citing the founding of Los Alamos National Laboratory, the once-secret federal installation that helped develop the atomic bomb.

The letter refers to the heritage, service and scientific achievements of the northern New Mexico community.

This year marks the 75th anniversary of the founding of the lab, one of the nation’s premier nuclear weapons research centers. Aside from its role in the Manhattan Project, work at Los Alamos provided the technical understanding in nuclear energy that led to the Naval Propulsion Program.

The naming effort also has the support of the U.S. Senate Armed Services Committee.

See the source image

Virginia Class Submarine

Of course I strongly support the efforts to bring back the name Los Alamos to the US Navy. My only hope is that in all the hubbub, the people who are pushing from the name don’t forget the mission the original LA performed. By providing remote dockings all of those years, she contributed so much to the nation’s defense.

Heritage means something to all of those who have served in the Navy.

This is one heritage that should not be forgotten.

Mister Mac

Post number 597… Submarine Number 597 4

An odd kind of submarine

USS Tullibee

USS Tullibee (This photo was probably taken shortly after her commissioning in 1960. The distinctive shark-fin domes are for the PUFFS sonar system).

 

Today’s post is about an odd numbered submarine that played a unique role in the development of the nuclear Navy, the USS Tulibee.  I am always reminded when I do stories about the nuclear submarine Navy that there has never been a point in my life that the United States did not have a nuclear submarine. I was born in the cradle of the Nuclear Navy (Pittsburgh not New London) in 1954 and had family members that worked at Bettis Atomic Energy from the very start.

From an article on Global Security.org

“In 1956 Admiral Arleigh Burke, then CNO, requested that the Committee on Undersea Warfare of the National Academy of Sciences study the effect of advanced technology on submarine warfare. The result of this study, dubbed “Project Nobska” was an increased emphasis on deeper-diving, ultraquiet designs utilizing long-range sonar. The USS Tullibee incorporated three design changes based on Project Nobska. First, it incorporated the first bow-mounted spherical sonar array. This required the second innovation, amidships, angled torpedo tubes. Thirdly, Tullibee was propelled by a very quiet turboelectric power plant.”

The Soviets were already developing boats that combined speed and diving ability. That ambition would remain one of their driving goals throughout the Cold War. Some of their later boats were rumored to seceded the diving capability of Allied Submarines by a significant amount. So Tullibee was an early recognition by American planners for the need for stronger ASW capability and operational improvements.

“Naval Reactors’ effort to develop a quiet nuclear propulsion plant began early — even before the sea trials of the Nautilus — with the hunter-killer submarine Tullibee (SSN 597). The purpose of the hunter-killer was to ambush enemy submarines. As the mission of the ship was seen in the early 1950s, speed was less important than silence. By substituting an electric-drive system for reduction gears, Rickover hoped to reduce noise. In this approach a generator ran an electric motor. Varying the speed of the motor would achieve the same result as the reduction gear, but there would be a penalty; the electric propulsion system would be larger and heavier than the components it replaced.

On 20 October 1954, the Department of Defense requested the Atomic Energy Commission to develop a small reactor for a small hunter-killer submarine. The ship was meant to be the first of a large class. The commission, wishing to broaden industrial participation in the program, assigned the project to Combustion Engineering, Incorporated. The S1C prototype achieved full power operation on 19 December 1959 at Windsor, Connecticut. Congress authorized the Tulibee in the 1958 shipbuilding program, Electric Boat launched the ship on 27 April 1960, and the navy commissioned her on November 9 of that year. The ship was not small; although her tonnage, beam, and draft were less than the Skipjack, her length was greater. By the time the Tullibee was in operation, she was about to be superseded by the Thresher class.”

SSN-597 USS Tullibee Patch

“Tullibee combined the ASW focus of the SSKs with the smallest nuclear reactor then feasible with an eye toward a relatively cheap, dedicated ASW asset that could be deployed in the numbers still considered necessary to fully populate the forward barriers. Compared to the 15,000 SHP S5W type reactor of a Skipjack, Tullibee had a 2500 SHP reactor and turbo-electric drive. She could barely make 20 knots, but she lacked the reduction gears whose loud tonals made prior SSNs so easy for SOSUS to detect at extreme range. She also continued the tradition established by the BQR-4 equipped SSKs by mounting a large, bow mounted, passive, low frequency array, the BQR-7. On Tullibee, the BQR-7 was wrapped around the first spherical active sonar, the BQS-6, and together they formed the first integrated sonar system, the BQQ-1.

Superficially, the Tullibee appeared to be one of the blind alleys into which technological evolution occasionally wandered. Nevertheless, the ship was important. To get good reception, her sonar was placed far forward, as far away from the ship’s self-generated noise as possible. Her torpedo tubes were moved aft into the midship section and were angled outward from the centerline—features that were incorporated in the Thresher submarines.8 Finally, electric drive worked well; the submarine was the quietest nuclear platform the Navy had.

As an ASW platform her performance was unmatched, but almost as soon as the decision to deploy Tullibee was made, a further decision was made to avoid specialized platforms and pursue instead a multipurpose SSN that best combined the speed of Skipjack and the ASW capability of Tullibee into one platform. This became the USS Thresher.”

The Tullibee had a good career lasting from the early sixties into the late 1980’s. She was superseded by a number of classes but the work done on her would impact most of those classes. Tactics leaned in those early days would help the newer boats to understand the opportunities that existed for modern nuclear submarine warfare.

Decommissioned and stricken from the Naval Vessel Register on 25 June 1988, ex-Tullibee entered the Navy’s Nuclear Powered Ship and Submarine Recycling Program on 5 January 1995. Recycling was completed on 1 April 1996. One of the fairwater planes from the Tullibee can be seen as part of a permanent art installation on the shore of Lake Washington in Seattle.

To all who built her and sailed on her, Brazo Zulu.

Mister Mac

 

Birth of the Boomers 2

Happy New Year from TLS

I have been doing a lot of research on my WW2 projects and came across a great source of information.

The Navy publishes a monthly magazine that dates back to the 1920’s under a variety of names including “All Hands Magazine”.

Now for something completely different

I was thinking about how submarines have changed and of course one of the real milestones in submarine operations was the creation of the Polaris Program. This is one of those game changing moments in many ways. While the boats were built using methods that dated to the Fleet Boats, the marriage of a new power and propulsion system and brand new form of weapon fundamentally changed submarine warfare as well as global warfare. While earlier systems had been developed to attack the enemy ships and territory (Regulas for instance) Polaris provided a multiple survivable weapon that would be difficult to detect.

From the Nautilus on, submarines had already proven their new stealth technology. No longer would boats be required to come to the surface (or near to the surface while snorkeling) on a regular basis. These new vessels became true submarines in the sense that they could operate for months at a time and perform all of their designated missions. These boats could provide enough air and water and habitability was greatly improved. Most importantly though, the purpose of the boat was more than adequately met. The 41 for Freedom boats would contribute greatly to the winning of the Cold War (at least the first one).

The USS George Washington SSBN 598 was commissioned on December 30, 1959. The January “All Hands Magazine” chronicled the development of the weapons systems and boats that would follow as the nation geared up for this newest phase of the Cold War. The engineering and production capabilities that were needed to accomplish these tasks stand as monuments to American ingenuity to this day.

Here is the link to the article.

http://www.navy.mil/ah_online/archpdf/ah196001.pdf

Enjoy the read

Mister Mac